ryujinx/src/Ryujinx.Graphics.Gpu/GpuContext.cs
Marco Carvalho a23d8cb92f
Replace "List.ForEach" for "foreach" (#6783)
* Replace "List.ForEach" for "foreach"

* dotnet format

* Update Ptc.cs

* Update GpuContext.cs
2024-05-08 13:53:25 +02:00

456 lines
16 KiB
C#

using Ryujinx.Common;
using Ryujinx.Graphics.Device;
using Ryujinx.Graphics.GAL;
using Ryujinx.Graphics.Gpu.Engine.GPFifo;
using Ryujinx.Graphics.Gpu.Memory;
using Ryujinx.Graphics.Gpu.Shader;
using Ryujinx.Graphics.Gpu.Synchronization;
using System;
using System.Collections.Concurrent;
using System.Collections.Generic;
using System.Threading;
namespace Ryujinx.Graphics.Gpu
{
/// <summary>
/// GPU emulation context.
/// </summary>
public sealed class GpuContext : IDisposable
{
private const int NsToTicksFractionNumerator = 384;
private const int NsToTicksFractionDenominator = 625;
/// <summary>
/// Event signaled when the host emulation context is ready to be used by the gpu context.
/// </summary>
public ManualResetEvent HostInitalized { get; }
/// <summary>
/// Host renderer.
/// </summary>
public IRenderer Renderer { get; }
/// <summary>
/// GPU General Purpose FIFO queue.
/// </summary>
public GPFifoDevice GPFifo { get; }
/// <summary>
/// GPU synchronization manager.
/// </summary>
public SynchronizationManager Synchronization { get; }
/// <summary>
/// Presentation window.
/// </summary>
public Window Window { get; }
/// <summary>
/// Internal sequence number, used to avoid needless resource data updates
/// in the middle of a command buffer before synchronizations.
/// </summary>
internal int SequenceNumber { get; private set; }
/// <summary>
/// Internal sync number, used to denote points at which host synchronization can be requested.
/// </summary>
internal ulong SyncNumber { get; private set; }
/// <summary>
/// Actions to be performed when a CPU waiting syncpoint or barrier is triggered.
/// If there are more than 0 items when this happens, a host sync object will be generated for the given <see cref="SyncNumber"/>,
/// and the SyncNumber will be incremented.
/// </summary>
internal List<ISyncActionHandler> SyncActions { get; }
/// <summary>
/// Actions to be performed when a CPU waiting syncpoint is triggered.
/// If there are more than 0 items when this happens, a host sync object will be generated for the given <see cref="SyncNumber"/>,
/// and the SyncNumber will be incremented.
/// </summary>
internal List<ISyncActionHandler> SyncpointActions { get; }
/// <summary>
/// Buffer migrations that are currently in-flight. These are checked whenever sync is created to determine if buffer migration
/// copies have completed on the GPU, and their data can be freed.
/// </summary>
internal List<BufferMigration> BufferMigrations { get; }
/// <summary>
/// Queue with deferred actions that must run on the render thread.
/// </summary>
internal Queue<Action> DeferredActions { get; }
/// <summary>
/// Registry with physical memories that can be used with this GPU context, keyed by owner process ID.
/// </summary>
internal ConcurrentDictionary<ulong, PhysicalMemory> PhysicalMemoryRegistry { get; }
/// <summary>
/// Support buffer updater.
/// </summary>
internal SupportBufferUpdater SupportBufferUpdater { get; }
/// <summary>
/// Host hardware capabilities.
/// </summary>
internal Capabilities Capabilities;
/// <summary>
/// Event for signalling shader cache loading progress.
/// </summary>
public event Action<ShaderCacheState, int, int> ShaderCacheStateChanged;
private Thread _gpuThread;
private bool _pendingSync;
private long _modifiedSequence;
private readonly ulong _firstTimestamp;
private readonly ManualResetEvent _gpuReadyEvent;
/// <summary>
/// Creates a new instance of the GPU emulation context.
/// </summary>
/// <param name="renderer">Host renderer</param>
public GpuContext(IRenderer renderer)
{
Renderer = renderer;
GPFifo = new GPFifoDevice(this);
Synchronization = new SynchronizationManager();
Window = new Window(this);
HostInitalized = new ManualResetEvent(false);
_gpuReadyEvent = new ManualResetEvent(false);
SyncActions = new List<ISyncActionHandler>();
SyncpointActions = new List<ISyncActionHandler>();
BufferMigrations = new List<BufferMigration>();
DeferredActions = new Queue<Action>();
PhysicalMemoryRegistry = new ConcurrentDictionary<ulong, PhysicalMemory>();
SupportBufferUpdater = new SupportBufferUpdater(renderer);
_firstTimestamp = ConvertNanosecondsToTicks((ulong)PerformanceCounter.ElapsedNanoseconds);
}
/// <summary>
/// Creates a new GPU channel.
/// </summary>
/// <returns>The GPU channel</returns>
public GpuChannel CreateChannel()
{
return new GpuChannel(this);
}
/// <summary>
/// Creates a new GPU memory manager.
/// </summary>
/// <param name="pid">ID of the process that owns the memory manager</param>
/// <returns>The memory manager</returns>
/// <exception cref="ArgumentException">Thrown when <paramref name="pid"/> is invalid</exception>
public MemoryManager CreateMemoryManager(ulong pid)
{
if (!PhysicalMemoryRegistry.TryGetValue(pid, out var physicalMemory))
{
throw new ArgumentException("The PID is invalid or the process was not registered", nameof(pid));
}
return new MemoryManager(physicalMemory);
}
/// <summary>
/// Creates a new device memory manager.
/// </summary>
/// <param name="pid">ID of the process that owns the memory manager</param>
/// <returns>The memory manager</returns>
/// <exception cref="ArgumentException">Thrown when <paramref name="pid"/> is invalid</exception>
public DeviceMemoryManager CreateDeviceMemoryManager(ulong pid)
{
if (!PhysicalMemoryRegistry.TryGetValue(pid, out var physicalMemory))
{
throw new ArgumentException("The PID is invalid or the process was not registered", nameof(pid));
}
return physicalMemory.CreateDeviceMemoryManager();
}
/// <summary>
/// Registers virtual memory used by a process for GPU memory access, caching and read/write tracking.
/// </summary>
/// <param name="pid">ID of the process that owns <paramref name="cpuMemory"/></param>
/// <param name="cpuMemory">Virtual memory owned by the process</param>
/// <exception cref="ArgumentException">Thrown if <paramref name="pid"/> was already registered</exception>
public void RegisterProcess(ulong pid, Cpu.IVirtualMemoryManagerTracked cpuMemory)
{
var physicalMemory = new PhysicalMemory(this, cpuMemory);
if (!PhysicalMemoryRegistry.TryAdd(pid, physicalMemory))
{
throw new ArgumentException("The PID was already registered", nameof(pid));
}
physicalMemory.ShaderCache.ShaderCacheStateChanged += ShaderCacheStateUpdate;
}
/// <summary>
/// Unregisters a process, indicating that its memory will no longer be used, and that caches can be freed.
/// </summary>
/// <param name="pid">ID of the process</param>
public void UnregisterProcess(ulong pid)
{
if (PhysicalMemoryRegistry.TryRemove(pid, out var physicalMemory))
{
physicalMemory.ShaderCache.ShaderCacheStateChanged -= ShaderCacheStateUpdate;
physicalMemory.Dispose();
}
}
/// <summary>
/// Converts a nanoseconds timestamp value to Maxwell time ticks.
/// </summary>
/// <remarks>
/// The frequency is 614400000 Hz.
/// </remarks>
/// <param name="nanoseconds">Timestamp in nanoseconds</param>
/// <returns>Maxwell ticks</returns>
private static ulong ConvertNanosecondsToTicks(ulong nanoseconds)
{
// We need to divide first to avoid overflows.
// We fix up the result later by calculating the difference and adding
// that to the result.
ulong divided = nanoseconds / NsToTicksFractionDenominator;
ulong rounded = divided * NsToTicksFractionDenominator;
ulong errorBias = (nanoseconds - rounded) * NsToTicksFractionNumerator / NsToTicksFractionDenominator;
return divided * NsToTicksFractionNumerator + errorBias;
}
/// <summary>
/// Gets a sequence number for resource modification ordering. This increments on each call.
/// </summary>
/// <returns>A sequence number for resource modification ordering</returns>
internal long GetModifiedSequence()
{
return _modifiedSequence++;
}
/// <summary>
/// Gets the value of the GPU timer.
/// </summary>
/// <returns>The current GPU timestamp</returns>
internal ulong GetTimestamp()
{
// Guest timestamp will start at 0, instead of host value.
ulong ticks = ConvertNanosecondsToTicks((ulong)PerformanceCounter.ElapsedNanoseconds) - _firstTimestamp;
if (GraphicsConfig.FastGpuTime)
{
// Divide by some amount to report time as if operations were performed faster than they really are.
// This can prevent some games from switching to a lower resolution because rendering is too slow.
ticks /= 256;
}
return ticks;
}
/// <summary>
/// Shader cache state update handler.
/// </summary>
/// <param name="state">Current state of the shader cache load process</param>
/// <param name="current">Number of the current shader being processed</param>
/// <param name="total">Total number of shaders to process</param>
private void ShaderCacheStateUpdate(ShaderCacheState state, int current, int total)
{
ShaderCacheStateChanged?.Invoke(state, current, total);
}
/// <summary>
/// Initialize the GPU shader cache.
/// </summary>
public void InitializeShaderCache(CancellationToken cancellationToken)
{
HostInitalized.WaitOne();
foreach (var physicalMemory in PhysicalMemoryRegistry.Values)
{
physicalMemory.ShaderCache.Initialize(cancellationToken);
}
_gpuReadyEvent.Set();
}
/// <summary>
/// Waits until the GPU is ready to receive commands.
/// </summary>
public void WaitUntilGpuReady()
{
_gpuReadyEvent.WaitOne();
}
/// <summary>
/// Sets the current thread as the main GPU thread.
/// </summary>
public void SetGpuThread()
{
_gpuThread = Thread.CurrentThread;
Capabilities = Renderer.GetCapabilities();
}
/// <summary>
/// Checks if the current thread is the GPU thread.
/// </summary>
/// <returns>True if the thread is the GPU thread, false otherwise</returns>
public bool IsGpuThread()
{
return _gpuThread == Thread.CurrentThread;
}
/// <summary>
/// Processes the queue of shaders that must save their binaries to the disk cache.
/// </summary>
public void ProcessShaderCacheQueue()
{
foreach (var physicalMemory in PhysicalMemoryRegistry.Values)
{
physicalMemory.ShaderCache.ProcessShaderCacheQueue();
}
}
/// <summary>
/// Advances internal sequence number.
/// This forces the update of any modified GPU resource.
/// </summary>
internal void AdvanceSequence()
{
SequenceNumber++;
}
/// <summary>
/// Registers a buffer migration. These are checked to see if they can be disposed when the sync number increases,
/// and the migration copy has completed.
/// </summary>
/// <param name="migration">The buffer migration</param>
internal void RegisterBufferMigration(BufferMigration migration)
{
BufferMigrations.Add(migration);
_pendingSync = true;
}
/// <summary>
/// Registers an action to be performed the next time a syncpoint is incremented.
/// This will also ensure a host sync object is created, and <see cref="SyncNumber"/> is incremented.
/// </summary>
/// <param name="action">The resource with action to be performed on sync object creation</param>
/// <param name="syncpointOnly">True if the sync action should only run when syncpoints are incremented</param>
internal void RegisterSyncAction(ISyncActionHandler action, bool syncpointOnly = false)
{
if (syncpointOnly)
{
SyncpointActions.Add(action);
}
else
{
SyncActions.Add(action);
_pendingSync = true;
}
}
/// <summary>
/// Creates a host sync object if there are any pending sync actions. The actions will then be called.
/// If no actions are present, a host sync object is not created.
/// </summary>
/// <param name="flags">Modifiers for how host sync should be created</param>
internal void CreateHostSyncIfNeeded(HostSyncFlags flags)
{
bool syncpoint = flags.HasFlag(HostSyncFlags.Syncpoint);
bool strict = flags.HasFlag(HostSyncFlags.Strict);
bool force = flags.HasFlag(HostSyncFlags.Force);
if (BufferMigrations.Count > 0)
{
ulong currentSyncNumber = Renderer.GetCurrentSync();
for (int i = 0; i < BufferMigrations.Count; i++)
{
BufferMigration migration = BufferMigrations[i];
long diff = (long)(currentSyncNumber - migration.SyncNumber);
if (diff >= 0)
{
migration.Dispose();
BufferMigrations.RemoveAt(i--);
}
}
}
if (force || _pendingSync || (syncpoint && SyncpointActions.Count > 0))
{
Renderer.CreateSync(SyncNumber, strict);
foreach (var action in SyncActions)
{
action.SyncPreAction(syncpoint);
}
foreach (var action in SyncpointActions)
{
action.SyncPreAction(syncpoint);
}
SyncNumber++;
SyncActions.RemoveAll(action => action.SyncAction(syncpoint));
SyncpointActions.RemoveAll(action => action.SyncAction(syncpoint));
}
_pendingSync = false;
}
/// <summary>
/// Performs deferred actions.
/// This is useful for actions that must run on the render thread, such as resource disposal.
/// </summary>
internal void RunDeferredActions()
{
while (DeferredActions.TryDequeue(out Action action))
{
action();
}
}
/// <summary>
/// Disposes all GPU resources currently cached.
/// It's an error to push any GPU commands after disposal.
/// Additionally, the GPU commands FIFO must be empty for disposal,
/// and processing of all commands must have finished.
/// </summary>
public void Dispose()
{
GPFifo.Dispose();
HostInitalized.Dispose();
_gpuReadyEvent.Dispose();
// Has to be disposed before processing deferred actions, as it will produce some.
foreach (var physicalMemory in PhysicalMemoryRegistry.Values)
{
physicalMemory.Dispose();
}
SupportBufferUpdater.Dispose();
PhysicalMemoryRegistry.Clear();
RunDeferredActions();
Renderer.Dispose();
}
}
}